Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells
نویسندگان
چکیده
Agrobacterium-mediated transformation is a useful tool for the genetic modification in plants, although its efficiency is low for several plant species. Agrobacterium-mediated transformation has three major steps in laboratory-controlled experiments: the delivery of T-DNA into plant cells, the selection of transformed plant cells, and the regeneration of whole plants from the selected cells. Each of these steps must be optimized to improve the efficiency of Agrobacterium-mediated plant transformation. It has been reported that increasing the number of cells transformed by T-DNA delivery can improve the frequency of stable transformation. Previously, we demonstrated that a reduction in ethylene production by plant cells during cocultivation with A. tumefaciens-expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase resulted in increased T-DNA delivery into the plant cells. In this study, to further improve T-DNA delivery by A. tumefaciens, we modified the expression cassette of the ACC deaminase gene using vir gene promoter sequences. The ACC deaminase gene driven by the virD1 promoter was expressed at a higher level, resulting in a higher ACC deaminase activity in this A. tumefaciens strain than in the strain with the lac promoter used in a previous study. The newly developed A. tumefaciens strain improves the delivery of T-DNA into Solanum lycopersicum (tomato) and Erianthus ravennae plants and thus may be a powerful tool for the Agrobacterium-mediated genetic engineering of plants.
منابع مشابه
1-Aminocyclopropane-1-carboxylate deaminase enhances Agrobacterium tumefaciens-mediated gene transfer into plant cells.
Agrobacterium-mediated gene transfer is widely used for plant molecular genetics, and efficient techniques are required. Recent studies show that ethylene inhibits the gene transfer. To suppress ethylene evolution, we introduced 1-aminocyclopropane-1-carboxylate (ACC) deaminase into Agrobacterium tumefaciens. The ACC deaminase enhanced A. tumefaciens-mediated gene transfer into plants.
متن کاملPlant–Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer
Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increas...
متن کاملOptimization of Agrobacterium-mediated transformation in oyster mushroom (Pleurotus ostreatus) by vector containing human pro-insulin gene
Transferring foreign genes into mushroom mediated by Agrobacterium tumefaciens is a standard technique in genetic engineering. Recombinant human insulin has been greatly used in the treatment of type I diabetes. The production of edible mushroom derived insulin should facilitate oral delivery. In this study we used the Agrobacterium tumefaciens mediated transformation method for the transfer an...
متن کاملIsolation, Cloning and Sequence Analysis of 1-Aminocyclopropane-1-Carboxylate Deaminase Gene from Native Sinorhizobium meliloti
Background: Many plant growth-promoting bacteria including Rhizobia contain the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that can leave ACC, and thereby lower the level of ethylene in stressed plants. Drought and salinity are the most common environmental stress factors for plants in Iran. Objectives: The main aim of this research was development of bio-fertilizers containing A...
متن کاملReaction mechanisms of the bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase.
The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase promotes plant growth by sequestering and cleaving plant-produced ACC thereby lowering the level of ethylene in the plant. Decreased ethylene levels allow the plant to be more resistant to a wide variety of environmental stresses. Here the biochemical reaction mechanisms involved in ACC deaminase activity are critically reviewed.
متن کامل